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A variational method of evaluating functional integrals is proposed. This method 
is used to investigate the asymptotic behavior of the scalar-particle Green 
functions in stochastic fields. The equations for the Green functions in Euclidean 
space in stochastic fields are written. The solutions of these equations are 
represented in the form of a functional integral and then they are averaged over 
Gaussian stochastic fields. The variational method formulated above is used to 
evaluate the asymptotic behavior of these Green functions. The following 
equations are considered in this paper: a stochastic contribution to the mass of 
a scalar particle, a gauge stochastic field, and a weak stochastic contribution to 
the flat metric of Euclidean space. 

1. I N T R O D U C T I O N  

It is very popu la r  to represent  different physical  characteristics in the 

form of func t iona l  integrals.  3 However,  with the except ion of the Gauss i an  
integrals and  a few integrals of  a special form, calculat ions  of  func t iona l  
integrals are of a serious difficulty. The ma in  comput ing  methods  of func-  
t ional  integrals  are, first, the quasiclassical  approach  or the s tat ionary phase 

method  when the ma in  con t r ibu t ion  to the integral  is considered to 
come from a func t ion  which minimizes  an in tegrand  action,  4 and,  second,  

var ia t ional  calcula t ions  ( F e y n m a n  and  Hibbs ,  1965). 
In this paper  we proposed  a var ia t ional  method  improving  the F e y n m a n  

method  ( F e y n m a n  and  Hibbs,  1965) and  apply it for invest igat ion of the 

1Institute of Physics and TeChnology, Academy of Sciences of Mongolian People's Republic, 
Ulan-Bator, Mongolia. 

2Joint Institute for Nuclear Research, Dubna, USSR. 
3See, e.g., Climm and Jaffe (198D and Feynman Path Integrals (Lecture Notes in Physics, 
No. 106), Springer-Verlag, New York (1979). 

4See, e.g., Feynman Path Integrals. 
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asymptotic behavior of the Green functions in stochastic fields. The idea 
of  this method was formulated in Efimov (1985). 

For problems as difficult as calculations of functional integrals, vari- 
ational estimations should help at least to understand and give a sense of 
the character of the behavior of a functional integral, although they do not 
give its exact value. 

2. V A R I A T I O N A L  M E T H O D  

Here we formulate our variational method which will be used in what 
follows. Let the functional integral be given by 

I(g) = f do'~ e -gwE~ (2.1) 

do'~=-~q~exp{-�89 } (2.2) 

The notation is the following: D-l(xt, x2) is the distribution or the differen- 
tial operator. The Green function D(xl, x2) is defined by the equation 

f dyD-l(xl, y)D(y, x2) = 8(Xl-x2)  
V 

and it satisfies some given boundary conditions. 
The volume V c  ~d over which the integration is performed in (2.2) 

can be either finite or infinite. 
The functional differential in a lattice approximation is defined as 

~ = H d~(x) 
x C V  

The normalization constant N~ is determined from the condition 

f dtr~=l 

W[q~] is a real functional, and g is a "coupling constant." 
It is assumed that the functional integral (2.1) is defined on the Gaussian 

measure (2.2), at least there exists a perturbation series in the coupling 
constant g. 

Let us formulate our variational method. First, let us diagonalize the 
quadratic form in (2.2). We introduce the function A(x~, x2) satisfying the 
condition 

fv dy h(x~, y) a(y,  x2) = D(xl, x2) (2.3) 
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In the cases under consideration this function can easily be found, but it 
is enough for us to suppose its existence. Let us introduce the new functional 
variable 

~ ( x ) =  fv  dy A(x, y )~ (y )=(  A, qS )(x) (2.4) 

The functional integral (2.1) can be written 

I ( g ) = - ~  I 6(o exp{-½ Iv dX ~b2(x)-gW[( A, 4:')] } (2.5) 

where the new constant Ne~ is defined by the condition I(0) = 1. 
Let us choose in the volume V c ~  d some orthonormal system of 

functions {g{,}(x)}, where 

{n}=(n, , . . . ,nd) ,  nj=O, 1,2, . . .  ( j = l , . . . , d )  

satisfies the conditions 

f ddxg{,}(x)g~,,}(x) = 6{,,,,} = 6~,, i • • • 6,~,~ 
v 

g{,}(x)g{,i(x') = 8(a)(x- x ') = 8 (x -  x') 
{n} 

(2.6) 

The choice of the system (2.6) is sufficiently arbitrary. The unique condition 
imposed on this system is that the functions D(x,, x2) and A(x,, x2) can 
be developed over the functions of  this system. 

Let us represent the function ~b(x) over which the integration is perfor- 
med in (2.5) in the form 

~b(x) = Y~ u{,~}g{,~}(x) (2.7) 
{n} 

where the coefficients u{n} are independent variables. Then, 

I dx ¢;(x) = Y u~.~ 
v {n} 

(A, (9)(x)= Z A<,,}(x)u<,}, Ap,}(x) = f dy A(x, y)g{,,}(y) 
(2.8) 

The functional integral (2.5) can be written in the form of the infinitely 
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multiple integral 

f 
I(g) = I do',, exp{-gW[(A, ~b)]} 

, , t  

(2.9) 

do'. = ~.~1] (27r)d/-----------~ exp~--~ IL / 

where the normalization constant is written in explicit form. 
We want to stress that the representation (2.9) is equivalent to (2.1). 
Let us proceed to the variational estimation of the integral (2.9). We 

introduce the new variables in (2.9) 

U~n} 
u~.~- (1 + q~n~) '/z s~.~ (2.10) 

where the quantities q~.) and s~.) will be variational parameters. They satisfy 
the conditions 

We would like to make the following remarks. Instead of (2.10) it is 
possible to make the substitution 

U t 
u~,,t= y " rr "tt} + s~. I (2.11) 

(0 ,-'~.,t~ (1 + q{l}) 1/2 

where U is an orthogonal real matrix: det U = 1, UU r= L This matrix 
defines some rotation in the space of variables {u/,)}. However, according 
to (2.7), it signifies a transition to finother orthonormal basis (2.6). In other 
words, the basis enters into the set of our variational parameters. 

Let us substitute (2.10) into (2.9). We get 

1 f { q'"u~., I(g)=[i(l+q{.})l/2in) do..exp 1 ~  l+q(.~ 

s~.~ _1 } 
Y~ (1 + ql.i)l/2 u(.i • s~.i-gW[(Aq, 4))+(5,  s)] (2.12) 
{n} (n} 

where 

a~.~(x) ' (a, s)(x)= Z a~~176 (Aq, ~b) = • (1 + q~.})1/2 u{.}, 
{n} {n} 

The measure do.. is the same as in (2.9). 
Let us use the inequality 

I do .e -W>-exp{- f  do'W} 
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which is valid for any positive-definite measures and any real functions W. 
We obtain 

I(g)>-exp{-L[q]-�89 do-n W[(Aq, ~b)+(A, s)]} 

L [ q ] = � 8 9  [ln(l+q{,,}) q{~} ~l (2.13) 

(s, s) = 2 s~n} 
In} 

Representing our integral I(g) in the form 

I(g) = exp{-E (g)} (2.14) 

we can obtain from (2.13) for E(g) the upper estimation 

~(g)  _< E+(g) 
(2.15) 

This formula is the desired inequality. 
Thus, the variational parameters are, first, the orthonormal system (2.6) 

and, second, the parameters {q~,~, s{,}} over which we have to compute the 
minimum in (2.15). 

It should be noted that this variational estimation (2.15) gives the exact 
result for the quadratic functionals W[~]. 

In conclusion, we want to remark that this variational method differs 
from the Feynman method (Feynman and Hibbs, 1965) in that the additional 
parameters s~.} are introduced and the parameters q~.~ are connected with 
the pure Gaussian measure just as the specific properties of the differential 
operator D-~(xl, x2) enter into the interaction functional W. Therefore, the 
variational equations obtained from (2.15) connect directly the parameters 
q~.~ and s~.~ with the behavior of the Green function D(x~, x2), so that a 
more precise estimation can be achieved. 

3, GREEN FUNCTIONS IN THE FORM OF 
A FUNCTIONAL INTEGRAL 

Let us consider the Green function satisfying the following equation: 

-+  m2 i - - +  v~(x) W(x)+ a(x, yl V, W) = a ( x - y )  (3.1) 
OX~ 

where W(x)>-O. This equation is defined in the Euclidean space N e 

x 2 = x ~ + " " + x ~ ' [] ( i ~ ) 2 (00@1 02)5 . . . .  +. �9 . + O x  ~ (3.2) 
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The solution of equation (3.1) can be written in the following form 
according to the Feynman functional integral representation (Feynman, 
1951) 

G(x, y] V, W) 

Io { I o [  0 = da [exp(-am2)]Tr exp -a dfl - - +  V.(x(~)) 
ox. (t3 ) 

-a  dfl W(x(fl)) 6(x-y) 
0 

=foda[exp(-am2)]f  &k(fl)exp{-f/d~r 

Here T~ is a symbol of a "chronological" ordering in the parameter ft. 
The normalization of the functional integral in (3.2) is chosen in the 

following way: 

f aC exp{-fo' d13 4,2(~)} 6(x-2x/-d f '  ~ dfl qS(fl)) 

= I (dk]d exp(-ikx-ak2) 
\21r]  

1 -4--~a (47roe)d/2 exp (3.3) 

Let us perform the following transformations in (3.2). We will calculate 
the functional integral in the representation of basic vectors. The orthonor- 
mal basis on the interval 0 < f l  < 1 will be taken in the form (n = 1, 2 , . . . )  

I' 
g.(~)  = ~/2cos 2~rnfl (3.4) 

[V~ sin 2~rnfl 

We introduce the new variables of integration in (3.2) 

,g , (~)  = 6o .  + a . ( ~ )  
(3.5) 

CX3 

a,.(/3) = Y. (u . .  cos 2~n/3 + v.~ sin 2~n/3) 
n = l  



Green Functions in Stochastic Fields 1469 

We have 

4~o~, +~ (u.,~ + v.~.) 
n=l  

o' dfl' cb~,(,8') = f14~o,~ + a~,(fl) (3.6) 

A,., (fl ) = dfl' au (~') 

.=l ~ n  [u . .  sin 2Irn/3 + v..(1 - c o s  27rn13)] 

After introducing the new variables (3.5). using formulas (3.6), and perform- 
ing the integration over 0o.  with the condition (3.3), one can obtain for 
the functional integral (3.2) 

G(x ,y  I V, W ) =  (4~.a)a/2 exp - a m  2 

g(x, yt V, W)=f d~o I~(x, yl V)L(x,y] W) 
.I 

(x~-~)2]} R(x, y[ V, W) 

(3.7) 

Iv(x.y[ V)=exp  i dfl ( x - y - 2 a ~ / Z a ( f l ) ) . V . ( x [ 3 + y ( 1 - f l )  

+ 2aa/2A(,8 ) ) ) 

I ,(x,y[ W ) = e x p  - a  d~ W ( x ~ + y ( 1 - ~ ) + 2 a ' / 2 A ( ~ ) )  

do'~ = ~ exp -�89 z 
n=l  \ 2'T/" ,] n= l  (Un/~"{-Z)2/x) 

The representation (3.7) is the basis of our further calculations. 

(3.8) 

(3.9) 

4. SCALAR PARTICLES IN A STOCHASTIC FIELD 

As the first example of the application of our variational method, we 
consider the problem of the arising of a mass for scalar particles in a 
stochastic field. Our results can be formulated in the form of the following 
statement. 
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Statement. Let the equation 

[[-1+ gq~2(x)]G(x, Y I~) -- 8 ( x - y )  (4.1) 

be given in the Euclidean space R4. The field ~(x)  is a random Gaussian 
field with the correlation function 

I (dk]419(k2)e-'k%-x2) (4.2) (~o(xl)q~(x2))~ = D(xl-x2) = \2"rr/ 
The function /3(k 2) decreases rapidly enough so that 

D , =  ~ /)(k2)(k2)n < oo (n =0,  1) (4.3) 

Then, the following inequality is valid for the Green function averaged over 
the random field: 

> const x M 2 1/2 G(x-y)=(G(x, yl~o))~-[(x_y)2]l/2e p { -  + [ ( x - y )  ] } (4.4) 

Here 

M+=e>o,minA>o{~+2o~+2+g, fodse_S f (~__~)dk 4D(k 

xIl exp(, kn,  } 
where n is an Euclidean vector with n 2= 1. 

For the weak and strong coupling we have 

~ (gDo) 1/2, g<< 1 
M+ = [ 1.09(gD1)1/4, g >> 1 

(4.5) 

Now we proceed to prove this statement. According to the representa- 
tion (3.7), the Green function in a random field ~(x)  is written 

1 ~ d ~  -4-~ ~(xl~)=Tg 7 7~ exp R(xl~) 

R(xl~)= f dcr~exp{-ga f~ dfl~o2(xfl+2al/2a(fl))) 
(4.7) 

where we put y = 0 for convenience. 

(4.6) 
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The averaging of (4.7) over the Gaussian field q~(x) can be performed 
in the following way. The following representation is valid: 

exp{-gafold/3~2(x/3+2~l/2A(~))} 

=fdo'bexp{-2i(ga)'/2fo'd/3b(/3)~(x/3+2al/2A(/3)) } (4.8) 

where 

  b=  bexp( f01 

cc 

b(fl ) = bo + Y. ( t. cos 2 rrnfl + s. sin27rnfl) 
n = l  

Introducing the representation (4.8) in (4.7) and performing the averaging 
over the Gaussian random field ~(x), one gets 

[ exp-  a(x)=(a(xl~o)), (4~-)2jo a 

R(x, a ) =  exp[ -E(x ,  ~)] 

= f &rb f do-a exp{-2ga f f j  dfl, d~2 b(/31) (4.9) 

x D ( x(/3, - f12) + 2"f-d lt31' dtg a(/3 ) ) b(/32) } 

Now let us apply our variational method to (4.9). We introduce the 
variational parameters {p.} for the measure dO'b and {q,} for the measure 
&r.. Th parameters s. in (2.11) are set equal to zero for both measures. An 
additional investigation omitted here shows that these parameters equal 
zero in the limit X 2-'> 00. Using (2.13), one gets 

R(x, a) = e -E~ - e -E*(''~) 

E+(x, a)  = min 14L[q]+L[p] 
{ q,,, P,,} t 

(4.10) 
1 d u  4 

+2gOl f f 0 d/31d~2Bp(/31-~2); ( ~ )  e - u 2 / 2  

X D(x(fl  1 -/32) + 2u[oeAq(51 -/32)]'/2) / 
) 
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Here, the following formulas are introduced: 

Bp( /31 -  /32) -- j d~ bp(/3,)bv(/32) 

oo cos 2~n(/31-/32) 
=�89 E 

n--1 1 +p. 
oo Pn 

=�89 - .~1= 1 + p~ cos 27rn(/3~-/32) 
(4.11) 

f a oR(f,i=a/3ao(/3))__f ( \(27r)1/2] e-"2/2R(u[Aq(fll-/32)] 1/2) 

~, 211 - c o s  2rrn(flx-/32)1 
Aq(/31 ~ ~ 2 ~ ,=~ z~ (2~.n)2(1 + q,) 

The behavior of the Green function as x2+co is of interest. Let us 
calculate this asymptotic behavior in this limit. For this aim we put in the 
integral (4.9) 

= Ixl~ [121 = ( x = ) ' / q  

and 

(ixl /2 ' 
qn \ ~ r n /  P ' = \ c r n /  

where tr and A are variational parameters. Then, the following estimation 
for the Green function is valid: 

' f o  . . . .  / G(x)>--(4~)2lx[ ~--~ exp ~-~--~-tz+t iXl, ~:) (4.13) 

Here E+(lxl, ~) is defined by formula (4.10). In the case of the parameters 
(4.12) we obtain for formulas (4.11) 

L[q] = In sh Ixl~ Ixl~ 1 ' �89 
Ixl----~ 2cthlxl~+2 i ~  

1[ chlxla(1-213') ] 
Bp(fl)=-~ a(3) - Ix lx  sh Ixlx ~-1 

,�89 e -21xlAjt31 + 1] (4.14) 
Ixl-~ 

1 chlxl~-ch Ixl~(1-21/31 ) 
Aq(/3) = ~  Ixl~ sh Ixl~ 

1 _ e_21xt~l~l ) 
,~,~s 41-~ (1 
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Substituting (4.14) into (4.10) and introducing new variables flj-~fli/Alx[ 
(j = 1, 2), one gets, after some transformations, as Ixl -~ co, 

const G(x) >----~ e -M+txl (4.15) 

where M+ is defined by formula (4.5). 
The asymptotic behavior of M+ for small and large g can be obtained 

in the following way. Introducing the variables 

cr = gPo", A = gPA ', ~ = g-PC' 

where p is an independent parameter, one gets 

( 1 A 1-2 M+:g p min ~ - ~ + 2 o ' + ~ + g  P~: Io dse-~ f (~---~)dk 4"o(k 

[ { S 'k2 (1-e-~'/*)}l} (4.16) • 1 - e x p  i(kn) g ~ g2Oo. 

As g ~ 0, we have p = 1/2 and 

min J" 1 +  2tr +A+ ~:Dol M+ = gl/2 e,,,,~ [4~ Z J = (gOo) 1/2 

For g --> oo we have p = 1/4 and 

m+=gl/4r162 l ( 1 + 4 ,  ~'~ min -7:+2o'+~s~Dl\~-5 6 - ~ ] J  

<_ 1.09(gDl) 1/4 

5. SCALAR PARTICLES IN A STOCHASTIC 
VECTOR GAUGE FIELD 

The next example is relevant to Simonov (1988a, b), where the author 
claims that stochastic gauge fields (electromagnetic fields, for example) can 
lead to the confinement of particles which are in these fields. The 
confinement is considered to be reached if the Green function decreases at 
large distances more rapidly than any linear exponent, i.e., 

lim IG(x)l exp{N(x2) 1/2} = 0 
Ixl--,~ 
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for any N > 0. This condition means that these Green functions cannot 
describe asymptotically free states of particles. 

Here, we show that this is not true. Our conclusion is based on the 
following statement. 

Statement. Let the equation 

L ax~ 

be given in the Euclidean space R 4. The vector field V, is defined by 

L V,(x,y)= dssFu~(xs+y(1-s))(x-y)~ (5.2) 

Here F,~(x) is a random Gaussian field with the correlation function 

(Fu.(x)Fp,~(y)) F = (a~.p&,~ - a,..,a~,,)D(x - y )  

O(x) = ~ t)(k2) e_,~ x (5.3) 

where the f u n c t i o n / ) ( k  2) decreases rapidly enough. 
Then, the following inequality is valid for the Green function averaged 

over the random field F,~ in the limit ( x - y ) 2 - ~  oo: 

const exp{-m[(x-y)2] 1/2} (5.4) G(x - y )  = (G(x, y I F) )v  ~ [(x _ y)211/2  

In other words, a vector gauge random field does not give even a positive 
contribution to the mass of the particle. 

We proceed to prove this statement. For the solution of equation (5.1) 
the representation (3.7) gives 

X - -  2 

(4"/7"0:) 2 

R(x, y l V) = I do', exp { i fo' dfl ( x - y + 2a l/Z a(fl ) ) ~ (5.5) 

x V~(x~ +y(1  -r 

where V, is defined by formula (5.2). Averaging (5.5) over the random field 
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F~.~ and putting y = 0, one obtains 

R ( x )  = (R(x ,  ol v))~ 

= f &to exp{- W[X]} (5.6) 

Y = X~.(~8,)X'GS,)6[~.~.p~]Xo(fl2)X;(~2) (5.7) 

= 4a[ x~. ( a~(~81) - fl~a~(~81) ) - 2a U2Au (~Oa~(fl~) ]8t,,v,p~] 

x [x,,(a~(fl2) -/32a~(/32)) - 2aU2Ao(~82)a~(~2)] 

where 

X u ( ~  ) = X,,~8 + 2al/Za, , ( f l  ) 

=am X X'~(~)  aft u(~)=X'*+2~ 

The variational estimation (2.13) gives for (5.6) 

R(x ,  a)  = e -E~x'~) >- e -E§ 

E+(x, a ) = m i n  [4L[q] + W[q]] 
{q,,} 

W[q] = f ao-o w[xq] 
d 

where 

Xq(~8 ) = x f 1 -  2a U2Aq(fl ) 

Aq(~) = d~' ao(~' ) 

c ~  aq(~) = ~, u. cos 2rrn~ + va sin 21rnr 
.=1 (1+ q.) u2 

The variational parameters q. are chosen in the form 

q" \ ~rn / [Ixl (x2)'/2] 

(5.8) 

(5.9) 

(5.1o) 
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where o- is a variational parameter. Then, L[q] is defined by formula (4.14). 
The convolutions of the fields Aq (fl) and aq (fl) which arise when calculating 
the functional integral (5.9) are 

(Aqt~ (fll)Aq~,(iss)) 

= j do', Aqtz(ISl)Aqv(IS2 ) 

= 6~_..z ~ 1 - c o s  27rn/31 - c o s  2~'nfls+cos 2~'n(isl -/32) 
4 . = ,  (Trn)2+ (~ lx l )  ~ 

3.,, [ch trlx I - c h  o ' lx l (1-2/31)-ch  o'lxl(1-2fl2) 
- 8~ lx l  sh ~ lx l  

+ch  trlxl(1-2lfl  I - fl2l)] 

6/z~ [1 - e -2~ - e-2'~lxl~2+ e -2~  (5.11) 

(Aq~ (isl)aq~,(iss)) 

o 
= afl--~2 (Aq.(fl])Aq~(fl2)) 

6~__z [e-=~lxl~2+ e ( i s l - I S d  e -2~lxtle~-~21] 
ot~l-,~ 4 

( aq~ (fll)aq~(fl=) ) 
0 = 

- -  (Aq~ (fll)Aq,,(fl2)) 
Off1 a~2 

, I~ .~[~(IS,  _ ~ )  _ ~ lx l  e -=~l' l l~'-~:l]  
o~xl~o~ 

The function (5.9) can be written 

W(~ ]x]) : 1 f l ;  d~l d~2 ff Iol ds1 ds2 s1s2 ff ( dk'~ 4~(k=) ' 2 "/T ,] 

xexp[ilxl(kn)(~Sl-g=s=)]J(Ixl, o-; #1, Is=, s , ,  s=) (5.12) 

J = f dtr~ (exp{i2a ]/:(k[s]Aq(IsO - ssAq(Is2)]}) Yq 

where Yq is defined by (5.7), where the vector X(Is) is changed by Xq(Is). 
The integral for J can easily be calculated. However, we do not write 

this cumbersome expression here, but pick out from it the leading terms in 
the limit Ixl ~ co. It should be noted that 

- -Ixlr  (5 .13)  



Green Functions in Stochastic Fields 1477 

where ~= O(1) as [x]->oo because the asymptotic behavior of the Green 
function in (5.5) is defined by a saddle point of the integrand. 

The convolutions (5.11) considered as distributions of the variables fll 
and/32 have the following smallness order: 

(Aql~(/31)Aqp(/31))=~[1d-O(o.-~-~ll) ] 

The limiting relation takes the form 

f ~k27~'](dk~4F(k2) ei lXl(k.)(~: , -~:2)  

1 
>ix l~(fl,s,-/32s2) f dk F k 2 

if the function F(u) decreases rapidly enough. 
Since the limiting expressions for the convolutions (5.14) do not depend 

on/31 and/32, the integral over/31 and/32 can be calculated, 

ff I~ 10($1--$2)-~-% 0($2--$1) (5.16) d/31 d/32 ~(/31s1 - fl2s2) = s l  $2 

Taking into account (5.13)-(5.16) and introducing the new variables sl = s 
and s2=s(l+t)/2, the expression for (5.12) can be written, after some 
calculations, 

F(~7)=~TI~dss21~dt I ~dk 3/)(k 2) exp (-k2Bs2-~) (5.17) 

x (1 +�89 2) 
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where ~ = ~/2o.. It is easily seen that 

[ 0 ( ~ ) ,  r i c O  

Finally, for the Green function (5.4) we obtain, as Ixl-> oo, 

const 
C(x)  e 

M + = m i n l m 2 , + l + 2 o . + F ( 2 ~ ) }  

Introducing 7? = ( / 2 o - ,  one gets 

M + = m i n t m 2 ' + ~ + ~  +F(rl) 

{/ 1tl/2 )} = m i n  m2 + + F(-q = m 

Thus, we obtain (5.4). 

Dineykhan et al. 

(5.18) 

6. SCALAR PARTICLES IN A SPACE WITH 
FLUCTUATING METRIC 

In this section we calculate a correction to the mass of a scalar particle 
in a Euclidean space with a weak stochastic correction to the metric of  a 
fiat Euclidean space •4. Suppose that this metric can be written 

gu~(x) = 6.~ + e.,,(x) (6.1) 

The Lagrangian of scalar particles in the space with this metric has the form 

L=�89 f d4xg'/2[g..(x) ~ ~162 m2(p2(x)] 
Ox, Ox~ 

The equation of motion is 

0 2 Og~ O~o(x) 
ox. axe 

O l n v ~  O~o(x) m2o(x )=0 (6.2) - -  - -  t- & , ~ - -  
OX~. OX,, 

The weak stochastic field e.~(x) should be considered as a gravity-like field, 
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i.e., a field with spin two. In this case, sc,~(x) satisfies the conditions 

e~(x) = G~,(x), tr e = e~(x) = 0 
(6.3) 

0 
- -  e . ~ ( x )  = 0 
ox,~ 

Then, the second term in (6.2) equals zero. The third term in (6.2) is 0 ( 8  3 ) 
because 

[g(x)] 1/~ = 1 +�89 tr e2(x) + O(e 3) 

and after averaging over e,v, the second term in ~ leads to a constant. 
Therefore, (O/Ox~,) In ~ - - -  0 ( 8  3) and this term does not give any contribu- 
tion to corrections of the second order. 

As a result, the equation in a weak stochastic field is 

-g,~(x) ox +m2 r 

The equation for the Green function of a scalar particle can be written 

{ 02 +m2}G(x, y l e ) = 8 ( x - y )  (6.4) 
[G~ + e~(x)] ox. ox~ 

Let us consider the stochastic field e~,~(x). This field satisfies the 
conditions (6.3) and is a random Gaussian field with the correlation function 

(eu,,(x)ep,,(y))~ = O,,,,oo-(x-y) 

= f  d 4 
d 

(6.5) 
A.,.,p,.(k)=d.pd,.~+d.,.d,,p-~d~.doo- 

Gk~ 
dr,, = 6.. k2 

The func t ion /5 (k  2) is supposed to decrease rapidly enough. We choose it 
in the form 

k2) = ~22 e-kVA2 (6.6) / 5 (  

Here 1/A defines the correlation length. It is natural to suppose that it is 
of  the order of  the Planck length, 

1/A-Lp~=(GT)'/2~-l.62xlO-33cm 
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Let us cons ider  equa t ion  (6.4). The  solut ion o f  this equa t ion  can be 
represen ted  in the fo rm o f  a funct ional  integral  (we put  y = 0): 

G(xle)=f?dae-m2~Tr 
x exp{- fo'df ~b.(f)g~l~(x(f))~b~(f) 

Io --20l 1/2 d f  q~,. (fl) a(X) 

where  

(6.7) 

1 1 

N[O] = 1 

After  s t andard  t rans format ions ,  one gets 

G(xle)= fodae-""2 f f 6q, 34,3(x-2a1/2 f; dflc~(f)) 
xexp{- f] df[O.(fl)g.~(X(fl))C,~(fl) 

(6.8) 

+ 4,. (f)g72(x(f))4,~(f)]} 

x.(f) =2~ '/2 aft' 4,.(f') 

We cons ider  the case o f  a weak  stochast ic  field. Restr ict ing ourselves to the 
second order  in the field e~,~(x), we get 

g~,l~(x) = B~,~ - e,,~(x) + e~,o(x)eo~(x ) + O(e 3) 
and 
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In this approximation the Green function has the form 

O(xl ~) = fo ~ 
da 

(4era) 2 e-'~'2-x2/4"J(x, a[e) (6.9) 

J(x, otle)=f do',,exp(~8(o) f f  dfle.,.(X(fl))e,..(X(fl)) 

j" - d~ O.(~)e~p(X(fl))ep~(X(~))4~(~) 
0 

X (fl ) = x~ + 2a'/2A(fl ) 

1 X'(fl)  

Averaging (6.10) over the weak stochasic field e ~  gives 

J ( x ,  ,~) = ( J ( x ,  ,~ I~))~ 

=exp{~8(O)D.,,,,,.(O)-fdo'.ff dfl ~bu (/3) &~ (/3) D~,o,..(0) 

- x(&)lG(f12)~032)} 

As Ix I ~ oo the integral (6.9) is defined by the saddle point a = Ixl/2m. Then 

t~m_._.�88 f dk  4 ~ 2 2 k 2 (1 (krt)2'~2 7 

and 

G(x) = e -(m-~")p~l (6.11) 

I f / ) ( k  2) is given by (6.6), then for m << A one obtains 

m 2 4 2 5 2[ 1 A \  3m=m(-~)2GA ~ 1 + i ~  ~~'i In - ~ )  (6.12) 
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